Telegram Group & Telegram Channel
Хотим ли мы иметь постоянную скорость обучения или лучше менять ее в ходе обучения?

Как правило, рекомендуется начинать скорость обучения с относительно высокого значения, а затем постепенно уменьшать скорость обучения, чтобы модель не превышала минимальные значения, и в то же время мы не хотим начинать с очень низкой скорости обучения, поскольку обучение модели займет слишком много времени.

Существует множество доступных методов снижения скорости обучения. Например, в PyTorch вы можете использовать функцию под названием StepLR, которая снижает скорость обучения каждого параметра на значение гаммы, которое мы должны передать через аргумент, после n числа эпох, которое вы также можете установить через аргумент функции с именем epoch_size.



tg-me.com/ds_interview_lib/27
Create:
Last Update:

Хотим ли мы иметь постоянную скорость обучения или лучше менять ее в ходе обучения?

Как правило, рекомендуется начинать скорость обучения с относительно высокого значения, а затем постепенно уменьшать скорость обучения, чтобы модель не превышала минимальные значения, и в то же время мы не хотим начинать с очень низкой скорости обучения, поскольку обучение модели займет слишком много времени.

Существует множество доступных методов снижения скорости обучения. Например, в PyTorch вы можете использовать функцию под названием StepLR, которая снижает скорость обучения каждого параметра на значение гаммы, которое мы должны передать через аргумент, после n числа эпох, которое вы также можете установить через аргумент функции с именем epoch_size.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/27

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Библиотека собеса по Data Science | вопросы с собеседований from sa


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA